Thermoelectric phase diagram of the SrTiO3-SrNbO3 solid solution system


الملخص بالإنكليزية

Thermoelectric energy conversion - the exploitation of the Seebeck effect to convert waste heat into electricity - has attracted an increasing amount of research attention for energy harvesting technology. Niobium-doped strontium titanate (SrTi1-xNbxO3) is one of the most promising thermoelectric material candidates, particularly as it poses a much lesser environmental risk in comparison to materials based on heavy metal elements. Two-dimensional electron confinement, e.g. through the formation of superlattices or two-dimensional electron gases, is recognized as an effective strategy to improve the thermoelectric performance of SrTi1-xNbxO3. Although electron confinement is closely related to the electronic structure, the fundamental electronic phase behavior of the SrTi1-xNbxO3 solid solution system has yet to be comprehensively investigated. Here, we present a thermoelectric phase diagram for the SrTi1-xNbxO3 (0.05 =< x =< 1) solid solution system, which we derived from the characterization of epitaxial films. We observed two thermoelectric phase boundaries in the system, which originate from the step-like decrease in carrier effective mass at x ~ 0.3, and from a local minimum in carrier relaxation time at x ~ 0.5. The origins of these phase boundaries are considered to be related to isovalent/heterovalent B-site substitution: parabolic Ti 3d orbitals dominate electron conduction for compositions with x < 0.3, whereas the Nb 4d orbital dominates when x > 0.3. At x ~ 0.5, a tetragonal distortion of the lattice, in which the B-site is composed of Ti4+ and Nb4+ ions, leads to the formation of tail-like impurity bands, which maximizes the electron scattering. These results provide a foundation for further research into improving the thermoelectric performance of SrTi1-xNbxO3.

تحميل البحث