Forthcoming applications in electronics and optoelectronics make phosphorene a subject of vigorous research efforts. Solvent-assisted exfoliation of phosphorene promises affordable delivery in industrial quantities for future applications. We demonstrate, using equilibrium, steered and umbrella sampling molecular dynamics, that the 1-ethyl-3- methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquid is an excellent solvent for phosphorene exfoliation. The presence of both hydrophobic and hydrophilic moieties, as well as substantial shear viscosity, allows [EMIM][BF4] simultaneously to facilitate separation of phosphorene sheets and to protect them from getting in direct contact with moisture and oxygen. The exfoliation thermodynamics is moderately unfavorable, indicating that an external stimulus is necessary. Unexpectedly, [EMIM][BF4] does not coordinates phosphorene by p-electron stacking with the imidazole ring. Instead, the solvation proceeds via hydrophobic side chains, while polar imidazole rings form an electrostatically stabilized protective layer. The simulations suggest that further efforts in solvent engineering for phosphorene exfoliation should concentrate on use of weakly coordinating ions and grafting groups that promote stronger dispersion interactions, and on elongation of nonpolar chains.