Sharp Hardy-Adams inequalities for bi-Laplacian on hyperbolic space of dimension four


الملخص بالإنكليزية

We establish sharp Hardy-Adams inequalities on hyperbolic space $mathbb{B}^{4}$ of dimension four. Namely, we will show that for any $alpha>0$ there exists a constant $C_{alpha}>0$ such that [ int_{mathbb{B}^{4}}(e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2})dV=16int_{mathbb{B}^{4}}frac{e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2}}{(1-|x|^{2})^{4}}dxleq C_{alpha}. ] for any $uin C^{infty}_{0}(mathbb{B}^{4})$ with [ int_{mathbb{B}^{4}}left(-Delta_{mathbb{H}}-frac{9}{4}right)(-Delta_{mathbb{H}}+alpha)ucdot udVleq1. ] As applications, we obtain a sharpened Adams inequality on hyperbolic space $mathbb{B}^{4}$ and an inequality which improves the classical Adams inequality and the Hardy inequality simultaneously. The later inequality is in the spirit of the Hardy-Trudinger-Moser inequality on a disk in dimension two given by Wang and Ye [37] and on any convex planar domain by the authors [26]. The tools of fractional Laplacian, Fourier transform and the Plancherel formula on hyperbolic spaces and symmetric spaces play an important role in our work.

تحميل البحث