A Cayley graph for a group $G$ is CCA if every automorphism of the graph that preserves the edge-orbits under the regular representation of $G$ is an element of the normaliser of $G$. A group $G$ is then said to be CCA if every connected Cayley graph on $G$ is CCA. We show that a finite simple group is CCA if and only if it has no element of order 4. We also show that many 2-groups are non-CCA.