We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in $mathbb{P}^{n+2}$ satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space $W$ of dimension $n+2$, classify $n$-tuples of skew-symmetric 2-forms $A^{alpha} in Lambda^2(W)$ such that [ phi_{beta gamma}A^{beta}wedge A^{gamma}=0, ] for some non-degenerate symmetric $phi$.