WKB solutions of difference equations and reconstruction by the topological recursion


الملخص بالإنكليزية

The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a $hbar$-difference equation: $Psi(x+hbar)=left(e^{hbarfrac{d}{dx}}right) Psi(x)=L(x;hbar)Psi(x)$ with $L(x;hbar)in GL_2( (mathbb{C}(x))[hbar])$. In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of $hbar$-differential systems to this setting. We apply our results to a specific $hbar$-difference system associated to the quantum curve of the Gromov-Witten invariants of $mathbb{P}^1$ for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve $y=cosh^{-1}frac{x}{2}$. Finally, identifying the large $x$ expansion of the correlation functions, proves a recent conjecture made by B. Dubrovin and D. Yang regarding a new generating series for Gromov-Witten invariants of $mathbb{P}^1$.

تحميل البحث