For given representation of finite groups on a finite dimension complex vector space, we can define exterior powers of representations. In 1973, Knutson found one of methods of calculating the character of exterior powers of representations with properties of $lambda$-rings. In this paper, we base this result of Knutson, and relate characters and elements of necklace rings, which were introduced by N.Metropolis and G-C.Rota in 1983, via a generating function of the character of exterior powers of representations. We focus on integer-valued characters and discuss a relation between integer-valued characters and element of necklace rings which has finite support and is contained in some images of truncated operations.