Robustness of spatial pattern against perturbations is an indispensable property of developmental processes for organisms, which need to adapt to changing environments. Although specific mechanisms for this robustness have been extensively investigated, little is known about a general mechanism for achieving robustness in reaction-diffusion systems. Here, we propose a buffered reaction-diffusion system, in which active states of chemicals mediated by buffer molecules contribute to reactions, and demonstrate that robustness of the pattern wavelength is achieved by the dynamics of the buffer molecule. This robustness is analytically explained as a result of the scaling properties of the buffered system, which also lead to a reciprocal relationship between the wavelengths robustness and the plasticity of the spatial phase upon external perturbations. Finally, we explore the relevance of this reciprocity to biological systems.