Chemical-disorder-caused Medium Range Order in Covalent Glass


الملخص بالإنكليزية

How atoms in covalent solids rearrange over a medium-range length-scale during amorphization is a long pursued question whose answer could profoundly shape our understanding on amorphous (a-) networks. Based on ab-intio calculations and reverse Monte Carlo simulations of experiments, we surprisingly find that even though the severe chemical disorder in a-GeTe undermined the prevailing medium range order (MRO) picture, it is responsible for the experimentally observed MRO. That this thing could happen depends on a novel atomic packing scheme. And this scheme results in a kind of homopolar bond chain-like polyhedral clusters. Within this scheme, the formation of homopolar bonds can be well explained by an electron-counting model and further validated by quantitative bond energy analysis based. Our study suggests that the underlying physics for chemical disorder in a-GeTe is intrinsic and universal to all severely chemically disordered covalent glasses.

تحميل البحث