One dimensional topological insulators are characterized by edge states with exponentially small energies. According to one generalization of topological phases to non-Hermitian systems, a finite system in a non-trivial topological phase displays surface states with exponentially long life times. In this work we explore the possibility of exploiting such non-Hermitian topological phases to enhance the quantum coherence of a fiducial qubit embedded in a dissipative environment. We first show that a network of qubits interacting with lossy cavities can be represented, in a suitable super-one-particle sector, by a non-Hermitian Hamiltonian of the desired form. We then study, both analytically and numerically, one-dimensional geometries with up to three sites per unit cell, and up to a topological winding number $W=2$. For finite-size systems the number of edge modes is a complicated function of $W$ and the system size $N$. However we find that there are precisely $W$ modes localized at one end of the chain. In such topological phases the quibts coherence lifetime is exponentially large in the system size. We verify that, for $W>1$, at large times, the Lindbladian evolution is approximately a non-trivial unitary. For $W=2$ this results in Rabi-like oscillations of the qubits coherence measure.