A Group Labeled Graph is a pair $(G,Lambda)$ where $G$ is an oriented graph and $Lambda$ is a mapping from the arcs of $G$ to elements of a group. A (not necessarily directed) cycle $C$ is called non-null if for any cyclic ordering of the arcs in $C$, the group element obtained by `adding the labels on forward arcs and `subtracting the labels on reverse arcs is not the identity element of the group. Non-null cycles in group labeled graphs generalize several well-known graph structures, including odd cycles. In this paper, we prove that non-null cycles on Group Labeled Graphs have the half-integral Erdos-Posa property. That is, there is a function $f:{mathbb N}to {mathbb N}$ such that for any $kin {mathbb N}$, any group labeled graph $(G,Lambda)$ has a set of $k$ non-null cycles such that each vertex of $G$ appears in at most two of these cycles or there is a set of at most $f(k)$ vertices that intersects every non-null cycle. Since it is known that non-null cycles do not have the integeral Erdos-Posa property in general, a half-integral Erdos-Posa result is the best one could hope for.