Monolayer molybdenum disulphide (MoS$_2$) is a promising two-dimensional (2D) material for nanoelectronic and optoelectronic applications. The large-area growth of MoS$_2$ has been demonstrated using chemical vapor deposition (CVD) in a wide range of deposition temperatures from 600 {deg}C to 1000 {deg}C. However, a direct comparison of growth parameters and resulting material properties has not been made so far. Here, we present a systematic experimental and theoretical investigation of optical properties of monolayer MoS$_2$ grown at different temperatures. Micro-Raman and photoluminescence (PL) studies reveal observable inhomogeneities in optical properties of the as-grown single crystalline grains of MoS$_2$. Close examination of the Raman and PL features clearly indicate that growth-induced strain is the main source of distinct optical properties. We carry out density functional theory calculations to describe the interaction of growing MoS$_2$ layers with the growth substrate as the origin of strain. Our work explains the variation of band gap energies of CVD-grown monolayer MoS$_2$, extracted using PL spectroscopy, as a function of deposition temperature. The methodology has general applicability to model and predict the influence of growth conditions on strain in 2D materials.