Spin-Momentum Locking in the Near Field of Metal Nanoparticles


الملخص بالإنكليزية

Light carries both spin and momentum. Spin-orbit interactions of light come into play at the subwavelength scale of nano-optics and nano-photonics, where they determine the behaviour of light. These phenomena, in which the spin affects and controls the spatial degrees of freedom of light, are attracting rapidly growing interest. Here we present results on the spin-momentum locking in the near field of metal nanostructures supporting localized surface resonances. These systems can confine light to very small dimensions below the diffraction limit, leading to a striking near-field enhancement. In contrast to the propagating evanescent waves of surface plasmon-polariton modes, the electromagnetic near-field of localized surface resonances does not exhibit a definite position-independent momentum or polarization. Our results can be useful to investigate the spin-orbit interactions of light for complex evanescent fields. Note that the spin of the incident light can control the rotation direction of the canonical momentum.

تحميل البحث