Characterizing slices for proper actions of locally compact groups


الملخص بالإنكليزية

In his seminal work cite{pal:61}, R. Palais extended a substantial part of the theory of compact transformation groups to the case of proper actions of locally compact groups. Here we extend to proper actions some other important results well known for compact group actions. In particular, we prove that if $H$ is a compact subgroup of a locally compact group $G$ and $S$ is a small (in the sense of Palais) $H$-slice in a proper $G$-space, then the action map $Gtimes Sto G(S)$ is open. This is applied to prove that the slicing map $f_S:G(S)to G/H$ is continuos and open, which provides an external characterization of a slice. Also an equivariant extension theorem is proved for proper actions. As an application, we give a short proof of the compactness of the Banach-Mazur compacta.

تحميل البحث