Let $X$ be a smooth complex projective variety. In 2002, Bridgeland defined a notion of stability for the objects in $D^b(X)$, the bounded derived category of coherent sheaves on $X$, which generalized the notion of slope stability for vector bundles on curves. There are many nice connections between stability conditions on $X$ and the geometry of the variety. We construct new stability conditions for surfaces containing a curve $C$ whose self-intersection is negative. We show that these stability conditions lie on a wall of the geometric chamber of ${rm Stab}(X)$, the stability manifold of $X$. We then construct the moduli space $M_{sigma}(mathcal{O}_X)$ of $sigma$-semistable objects of class $[mathcal{O}_X]$ in $K_0(X)$ after wall-crossing.