We have developed FFT beamforming techniques for the CHIME radio telescope, to search for and localize the astrophysical signals from Fast Radio Bursts (FRBs) over a large instantaneous field-of-view (FOV) while maintaining the full angular resolution of CHIME. We implement a hybrid beamforming pipeline in a GPU correlator, synthesizing 256 FFT-formed beams in the North-South direction by four formed beams along East-West via exact phasing, tiling a sky area of ~250 square degrees. A zero-padding approximation is employed to improve chromatic beam alignment across the wide bandwidth of 400 to 800 MHz. We up-channelize the data in order to achieve fine spectral resolution of $Delta u$=24 kHz and time cadence of 0.983 ms, desirable for detecting transient and dispersed signals such as those from FRBs.