The electronic structure of a crystalline solid is largely determined by its lattice structure. Recent advances in van der Waals solids, artificial crystals with controlled stacking of two-dimensional (2D) atomic films, have enabled the creation of materials with novel electronic structures. In particular, stacking graphene on hexagonal boron nitride (hBN) introduces moire superlattice that fundamentally modifies graphenes band structure and gives rise to secondary Dirac points (SDPs). Here we find that the formation of a moire superlattice in graphene on hBN yields new, unexpected consequences: a set of tertiary Dirac points (TDPs) emerge, which give rise to additional sets of Landau levels when the sample is subjected to an external magnetic field. Our observations hint at the formation of a hidden Kekule superstructure on top of the moire superlattice under appropriate carrier doping and magnetic fields.