A dearth of short-period massive binaries in the young massive star forming region M17: Evidence for a large orbital separation at birth?


الملخص بالإنكليزية

The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (sigma_rv = 5.6 +/- 0.2 km/s) in the young massive star forming region M17 to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the RV dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the simulated sigma_rv distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions (f_bin = 0.12_{-0.09}^{+0.16}) or with truncated period distributions (P_cutoff > 9 months) are able to reproduce the low sigma_rv observed within their 68%-confidence intervals. Parent populations with f_bin > 0.42 or P_cutoff < 47 d can however be rejected at the 5%-significance level. Both constraints are contrast with the high binary fraction and plethora of short-period systems found in few Myr-old, OB-type populations. To explain the difference, the first scenario requires a variation of the outcome of the massive star formation process. In the the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints are representative of the overall properties of massive young stellar objects, our results may provide support to a formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period distribution observed in few Myr-old OB binaries.

تحميل البحث