A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin--Triebel spaces with mixed norms


الملخص بالإنكليزية

The article deals with a simplified proof of the Sobolev embedding theorem for Lizorkin--Triebel spaces (that contain the $L_p$-Sobolev spaces $H^s_p$ as special cases). The method extends to a proof of the corresponding fact for general Lizorkin--Triebel spaces based on mixed $L_p$-norms. In this context a Nikolskij--Plancherel--Polya inequality for sequences of functions satisfying a geometric rectangle condition is proved. The results extend also to spaces of the quasi-homogeneous type.

تحميل البحث