Universal scaling in the Knight shift anomaly of doped periodic Anderson model


الملخص بالإنكليزية

We report a Dynamical Cluster Approximation (DCA) investigation of the doped periodic Anderson model (PAM) to explain the universal scaling in the Knight shift anomaly predicted by the phenomenological two-fluid model and confirmed in many heavy-fermion compounds. We calculate the quantitative evolution of the orbital-dependent magnetic susceptibility and reproduce correctly the two-fluid prediction in a large range of doping and hybridization. Our results confirm the presence of a temperature/energy scale $T^{ast}$ for the universal scaling and show distinctive behavors of the Knight shift anomaly in response to other orders at low temperatures. However, comparison with the temperature evolution of the calculated resistivity and quasiparticle spectral peak indicates a different characteristic temperature from $T^*$, in contradiction with the experimental observation in CeCoIn$_5$ and other compounds. This reveals a missing piece in the current model calculations in explaining the two-fluid phenomenology.

تحميل البحث