Impact of Stoichiometry of Yb2Ti2O7 on its Physical Properties


الملخص بالإنكليزية

A series of Yb2Ti2O7 doped samples demonstrates the effects of off-stoichiometry on Yb2Ti2O7s structure, properties, and magnetic ground state via x-ray diffraction, specific heat, and magnetization measurements. A stoichiometric single crystal of Yb2Ti2O7 grown by the traveling solvent floating zone technique (solvent = 30 wt% rutile TiO2 and 70 wt% Yb2Ti2O7) is characterized and evaluated in light of this series. Our data shows that upon positive x doping, the cubic lattice parameter a increases and the Curie-Weiss temperature decreases. Heat capacity measurements of stoichiometric Yb2Ti2O7 samples exhibit a sharp, first-order peak at T = 268(4) mK that is suppressed in magnitude and temperature in samples doped off ideal stoichiometry. The full entropy recovered per Yb ion is 5.7 J/K ~ Rln2. Our work establishes the effects of doping on Yb2Ti2O7s physical properties, which provides further evidence indicating that previous crystals grown by the traditional floating zone method are doped off ideal stoichiometry. Additionally, we present how to grow high-quality colorless single crystals of Yb2Ti2O7 by the traveling solvent floating zone growth method.

تحميل البحث