We investigate the physical properties of the inner gaseous disks of the three, hot, Herbig B2e stars, HD 76534, HD 114981 and HD 216629, by modelling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by the photospheric radiation from the central star in order to test if the optical and near-IR emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of HI (H$alpha$ and H$beta$), HeI, CaII and FeII. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as $sim 10^{-10},(R_{*}/R)^3, rm g,cm^{-3}$ in the equatorial plane of a 25 R$_{*}$ ($0.78$ AU) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H$alpha$-emitting portion of the inner gaseous disk of $sim 10^{-9} M_*$. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a $approx,1$ AU, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.