A self-consistency check for unitary propagation of Hawking quanta


الملخص بالإنكليزية

The black hole information paradox presumes that quantum field theory in curved spacetime can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynmans analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved spacetime. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of nau007five unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

تحميل البحث