We study an infinite family of one-parameter deformations, so-called $alpha$-continued fractions, of interval maps associated to distinct triangle Fuchsian groups. In general for such one-parameter deformations, the function giving the entropy of the map indexed by $alpha$ varies in a way directly related to whether or not the orbits of the endpoints of the map synchronize. For two cases of one-parameter deformations associated to the classical case of the modular group $text{PSL}_2(mathbb Z)$, the set of $alpha$ for which synchronization occurs has been determined. Here, we explicitly determine the synchronization sets for each $alpha$-deformation in our infinite family. (In general, our Fuchsian groups are not subgroups of the modular group, and hence the tool of relating $alpha$-expansions back to regular continued fraction expansions is not available to us.) A curiosity here is that all of our synchronization sets can be described in terms of a single tree of words. In a paper in preparation, we identify the natural extensions of our maps, as well as the entropy functions associated to each deformation.