Large 21 cm signals from AGN-dominated reionization


الملخص بالإنكليزية

We present here predictions for the spatial distribution of 21 cm brightness temperature fluctuations from high-dynamic-range simulations for AGN-dominated reionization histories that have been tested against available Lyman-alpha and CMB data. We model AGN by extrapolating the observed M-sigma relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen 21 cm spin temperature is significantly larger than the CMB temperature. Our AGN-dominated reionization histories increase the variance of the 21 cm emission by a factor of up to ten compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK^2 at scales accessible to experiments (k < 1 h/cMpc). This is lower than the sensitivity claimed to have been already reached by ongoing experiments by only a factor of about two or less. When reionization is dominated by AGN, the 21 cm power spectrum is enhanced on all scales due to the enhanced bias of the clustering of the more massive haloes and the peak in the large scale 21 cm power is strongly enhanced and moved to larger scales due to bigger characteristic bubble sizes. AGN dominated reionization should be easily detectable by LOFAR (and later HERA and SKA1) at their design sensitivity, assuming successful foreground subtraction and instrument calibration. Conversely, these could become the first non-trivial reionization scenarios to be ruled out by 21 cm experiments, thereby constraining the contribution of AGN to reionization.

تحميل البحث