Representations of superconformal algebras and mock theta functions


الملخص بالإنكليزية

It is well known that the normaized characters of integrable highest weight modules of given level over an affine Lie algebra $hat{frak{g}}$ span an $SL_2(mathbf{Z})$-invariant space. This result extends to admissible $hat{frak{g}}$-modules, where $frak{g}$ is a simple Lie algebra or $osp_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $hat{frak{g}}$-modules when $frak{g} =sl_2$ (resp. $=osp_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families. Another instance of modular invariance occurs for boundary level admissible modules, including when $frak{g}$ is a basic Lie superalgebra. For example, if $frak{g}=sl_{2|1}$ (resp. $=osp_{3|2}$), we thus obtain modular invariant families of $hat{frak{g}}$-modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules). However, in the case when $frak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $osp_{1|n}$, modular invariance of normalized supercharacters of admissible $hat{frak{g}}$-modules holds outside of boundary levels only after their modification in the spirit of Zwegers modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $SL_2(mathbf{Z})$-invariant space.

تحميل البحث