It is proposed here to investigate three major properties of the nuclear force that influence the amplitude of shell gaps, the nuclear binding energies as well as the nuclear $beta$-decay properties far from stability, that are all key ingredients for modeling the r-process nucleosynthesis. These properties are derived from experiments performed in different facilities worldwide, using several various state-of-the-art experimental techniques including transfer and knockout reactions. Expected consequences on the r process nucleosynthesis as well as on the stability of super heavy elements are discussed.