Singularity formation and global existence of classical solutions for one dimensional rotating shallow water system


الملخص بالإنكليزية

We study classical solutions of one dimensional rotating shallow water system which plays an important role in geophysical fluid dynamics. The main results contain two contrasting aspects. First, when the solution crosses certain threshold, we prove finite-time singularity formation for the classical solutions by studying the weighted gradients of Riemann invariants and utilizing conservation of physical energy. In fact, the singularity formation will take place for a large class of ${C}^1$ initial data whose gradients and physical energy can be arbitrarily small and higher order derivatives should be large. Second, when the initial data have constant potential vorticity, global existence of small classical solutions is established via studying an equivalent form of a quasilinear Klein-Gordon equation satisfying certain null conditions. In this global existence result, the smallness condition is in terms of the higher order Sobolev norms of the initial data.

تحميل البحث