In recent years, graphene growth optimization has been one of the key routes towards large-scale, high-quality graphene production. We have measured in-situ residual gas content during epitaxial graphene growth on silicon carbide (SiC) to find detrimental factors of epitaxial graphene growth. The growth conditions in high vacuum and purified argon are compared. The grown epitaxial graphene is studied by Raman scattering mapping and mechanical strain, charge density, number of graphene layers and graphene grain size are evaluated. Charge density and carrier mobility has been studied by Hall effect measurements in van der Pauw configuration. We have identified a major role of chemical reaction of carbon and residual water. The rate of the reaction is lowered when purified argon is used. We also show, that according to time varying gas content, it is preferable to grow graphene at higher temperatures and shorter times. Other sources of growth environment contamination are also discussed. The reaction of water and carbon is discussed to be one of the factors increasing number of defects in graphene. The importance of purified argon and its sufficient flow rate is concluded to be important for high-quality graphene growth as it reduces the rate of undesired chemical reactions and provides more stable and defined growth ambient.