The secrecy of a distributed-storage system for passwords is studied. The encoder, Alice, observes a length-n password and describes it using two hints, which she stores in different locations. The legitimate receiver, Bob, observes both hints. In one scenario the requirement is that the expected number of guesses it takes Bob to guess the password approach one as n tends to infinity, and in the other that the expected size of the shortest list that Bob must form to guarantee that it contain the password approach one. The eavesdropper, Eve, sees only one of the hints. Assuming that Alice cannot control which hints Eve observes, the largest normalized (by n) exponent that can be guaranteed for the expected number of guesses it takes Eve to guess the password is characterized for each scenario. Key to the proof are new results on Arikans guessing and Bunte and Lapidoths task-encoding problem; in particular, the paper establishes a close relation between the two problems. A rate-distortion version of the model is also discussed, as is a generalization that allows for Alice to produce {delta} (not necessarily two) hints, for Bob to observe { u} (not necessarily two) of the hints, and for Eve to observe {eta} (not necessarily one) of the hints. The generalized model is robust against {delta} - { u} disk failures.