The Future of Multi-Object Spectroscopy: a ESO Working Group Report


الملخص بالإنكليزية

(Abridged) We consider the scientific case for a large aperture (10-12m class) optical spectroscopic survey telescope with a field of view comparable to that of LSST. Such a facility could enable transformational progress in several areas of astrophysics, and may constitute an unmatched capability for decades. Deep imaging from LSST and Euclid will provide accurate photometry for spectroscopic targets beyond the reach of 4m class instruments. Such a facility would revolutionise our understanding of the assembly and enrichment history of the Milky Way and the role of dark matter through chemo-dynamical studies of tens of millions of stars in the Local Group. Emission and absorption line spectroscopy of redshift z=2-5 galaxies can be used to directly chart the evolution of the cosmic web and examine its connection with activity in galaxies. The facility will also have synergistic impact, e.g. in following up live and transpired transients found with LSST, as well as providing targets and the local environmental conditions for follow-up studies with E-ELT and future space missions. Although our study is exploratory, we highlight a specific telescope design with a 5 square degree field of view and an additional focus that could host a next-generation panoramic IFU. We discuss some technical challenges and operational models and recommend a conceptual design study aimed at completing a more rigorous science case in the context of a costed technical design.

تحميل البحث