Probing Brain Oxygenation Wave-forms with Near Infrared Spectroscopy (NIRS)


الملخص بالإنكليزية

The technique of near infrared spectroscopy (NIRS) allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). The devices that were used in our experiments were : Somanetics INVOS Brain Oximeter (IBO) and Toomims HEG spectrophotometer. The performances of both devices were compared including their merits and drawbacks. The IBO use for research has two drawbacks: the sampling rate is too small and the readings are limited to only two significant digits. The HEG device does not have these drawbacks, but is not developed sufficiently at this time to measure rSO2. We have measured the HEG readings and compared them with the rSO2 readings of the IBO. Results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. Measurements of end tidal CO2 (EtCO2) were taken simultaneously with cerebral oxygen saturation (rSO2) using the INVOS Cerebral Oximeter of Somanetics. Due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2/min or less. The results of all subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises.

تحميل البحث