REPPlab: An R package for detecting clusters and outliers using exploratory projection pursuit


الملخص بالإنكليزية

The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful in practice as a preprocessing step to find clusters or as an outlier detection tool for multivariate numerical data. Except from the package tourr that implements smooth sequences of projection matrices and rggobi that provides an interface to a dynamic graphics package called GGobi, there is no implementation of exploratory projection pursuit tools available in R especially in the context of outlier detection. REPPlab is an R interface for the Java program EPPlab that implements four projection indices and three biologically inspired optimization algorithms. The implemented indices are either adapted to cluster or to outlier detection and the optimization algorithms have at most one parameter to tune. Following the original software EPPlab, the exploration strategy in REPPlab is divided into two steps. Many potentially interesting projections are calculated at the first step and examined at the second step. For this second step, different tools for plotting and combining the results are proposed with specific tools for outlier detection. Compared to EPPlab, some of these tools are new and their performance is illustrated through some simulations and using some real data sets in a clustering context. The functionalities of the package are also illustrated for outlier detection on a new data set that is provided with the package.

تحميل البحث