Higher-order quantum bright solitons in Bose-Einstein condensates show truly quantum emergent behavior


الملخص بالإنكليزية

When an interaction quench by a factor of four is applied to an attractive Bose-Einstein condensate, a higher-order quantum bright soliton exhibiting robust oscillations is predicted in the semiclassical limit by the Gross-Pitaevskii equation. Combining matrix-product state simulations of the Bose-Hubbard Hamiltonian with analytical treatment via the Lieb-Liniger model and the eigenstate thermalization hypothesis, we show these oscillations are absent. Instead, one obtains a large stationary soliton core with a small thermal cloud, a smoking-gun signal for non-semiclassical behavior on macroscopic scales and therefore a fully quantum emergent phenomenon.

تحميل البحث