Counting Vacua in Random Landscapes


الملخص بالإنكليزية

It is speculated that the correct theory of fundamental physics includes a large landscape of states, which can be described as a potential which is a function of N scalar fields and some number of discrete variables. The properties of such a landscape are crucial in determining key cosmological parameters including the dark energy density, the stability of the vacuum, the naturalness of inflation and the properties of the resulting perturbations, and the likelihood of bubble nucleation events. We codify an approach to landscape cosmology based on specifications of the overall form of the landscape potential and illustrate this approach with a detailed analysis of the properties of N-dimensional Gaussian random landscapes. We clarify the correlations between the different matrix elements of the Hessian at the stationary points of the potential. We show that these potentials generically contain a large number of minima. More generally, these results elucidate how random function theory is of central importance to this approach to landscape cosmology, yielding results that differ substantially from those obtained by treating the matrix elements of the Hessian as independent random variables.

تحميل البحث