Suppressed Quenching and Strong Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities


الملخص بالإنكليزية

An emitter in the vicinity of a metal nanostructure is quenched by its decay through non-radiative channels, leading to the belief in a zone of inactivity for emitters placed within $<$10nm of a plasmonic nanostructure. Here we demonstrate that in tightly-coupled plasmonic resonators forming nanocavities quenching is quenched due to plasmon mixing. Unlike isolated nanoparticles, plasmonic nanocavities show mode hybridization which massively enhances emitter excitation and decay via radiative channels. This creates ideal conditions for realizing single-molecule strong-coupling with plasmons, evident in dynamic Rabi-oscillations and experimentally confirmed by laterally dependent emitter placement through DNA-origami.

تحميل البحث