Strongly self-absorbing C*-dynamical systems, III


الملخص بالإنكليزية

In this paper, we accomplish two objectives. Firstly, we extend and improve some results in the theory of (semi-)strongly self-absorbing C*-dynamical systems, which was introduced and studied in previous work. In particular, this concerns the theory when restricted to the case where all the semi-strongly self-absorbing actions are assumed to be unitarily regular, which is a mild technical condition. The central result in the first part is a strengthened version of the equivariant McDuff-type theorem, where equivariant tensorial absorption can be achieved with respect to so-called very strong cocycle conjugacy. Secondly, we establish completely new results within the theory. This mainly concerns how equivariantly $cal Z$-stable absorption can be reduced to equivariantly UHF-stable absorption with respect to a given semi-strongly self-absorbing action. Combining these abstract results with known uniqueness theorems due to Matui and Izumi-Matui, we obtain the following main result. If $G$ is a torsion-free abelian group and $cal D$ is one of the known strongly self-absorbing C*-algebras, then strongly outer $G$-actions on $cal D$ are unique up to (very strong) cocycle conjugacy. This is new even for $mathbb{Z}^3$-actions on the Jiang-Su algebra.

تحميل البحث