The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation $varepsilon$ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this letter, we prove a version of the adiabatic theorem for gapped ground states of quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo linear response formula for a broad class of gapped interacting systems.