The covariant understanding of dispersion relations as level sets of Hamilton functions on phase space enables us to derive the most general dispersion relation compatible with homogeneous and isotropic spacetimes. We use this concept to present a Planck-scale deformation of the Hamiltonian of a particle in Friedman-Lema^itre-Robertson-Walker (FLRW) geometry that is locally identical to the $kappa$-Poincare dispersion relation, in the same way as the dispersion relation of point particles in general relativity is locally identical to the one valid in special relativity. Studying the motion of particles subject to such Hamiltonian we derive the redshift and lateshift as observable consequences of the Planck-scale deformed FLRW universe.