To properly assess the impact of (cooperative) adaptive cruise control ACC (CACC), one has to model vehicle dynamics. First of all, one has to choose the car following model, as it determines the vehicle flow as vehicles accelerate from standstill or decelerate because of the obstacle ahead. The other factor significantly affecting the intersection throughput is the maximal vehicle acceleration rate. In this paper, we analyze three car following behaviors: Gipps model, Improved Intelligent Driver Model (IIDM) and Helly model. Gipps model exhibits rather aggressive acceleration behavior. If used for the intersection throughput estimation, this model would lead to overly optimistic results. Helly model is convenient to analyze due to its linear nature, but its deceleration behavior in the presence of obstacles ahead is unrealistically abrupt. Showing the most realistic acceleration and deceleration behavior of the three models, IIDM is suited for ACC/CACC impact evaluation better than the other two. We discuss the influence of the maximal vehicle acceleration rate and presence of different portions of ACC/CACC vehicles on intersection throughput in the context of the three car following models. The analysis is done for two cases: (1) free road downstream of the intersection; and (2) red light at some distance downstream of the intersection. Finally, we introduce the platoon model and evaluate ACC and CACC with platooning in terms of travel time ad network throughput using SUMO simulation of the 4-mile stretch of Colorado Boulevard / Huntington Drive arterial with 13 signalized intersections in Arcadia, Southern California.