The possibility of in-memory computing with volatile memristive devices, namely, memristors requiring a power source to sustain their memory, is demonstrated. We have adopted a hysteretic graphene-based field emission structure as a prototype of volatile memristor, which is characterized by a non-pinched hysteresis loop. Memristive model of the structure is developed and used to simulate a polymorphic circuit implementing in-memory computing gates such as the material implication. Specific regions of parameter space realizing useful logic functions are identified. Our results are applicable to other realizations of volatile memory devices.