An emph{interval $t$-coloring} of a multigraph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors. A emph{cyclic interval $t$-coloring} of a multigraph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors, under the condition that color $1$ is considered as consecutive to color $t$. Denote by $w(G)$ ($w_{c}(G)$) and $W(G)$ ($W_{c}(G)$) the minimum and maximum number of colors in a (cyclic) interval coloring of a multigraph $G$, respectively. We present some new sharp bounds on $w(G)$ and $W(G)$ for multigraphs $G$ satisfying various conditions. In particular, we show that if $G$ is a $2$-connected multigraph with an interval coloring, then $W(G)leq 1+leftlfloor frac{|V(G)|}{2}rightrfloor(Delta(G)-1)$. We also give several results towards the general conjecture that $W_{c}(G)leq |V(G)|$ for any triangle-free graph $G$ with a cyclic interval coloring; we establish that approximat