The highly successful Dirac equation can predict peculiar effects such as Klein tunneling and the Zitterbewegung (German for trembling motion) of electrons. From the time it was first identified by Erwin Schrodinger, Zitterbewegung (ZB) has been considered a key to understanding relativistic quantum mechanics. However, observing the original ZB of electrons is too difficult, and instead various emulations using entity models have been proposed, producing several successes. Expectations are high regarding charge transports in semiconductors and graphene; however, very few reports have appeared on them. Here, we report that ZB has a surprisingly large effect on charge transports when we play flat pinball with such trembling electrons in a semiconductor nanostructure. The stage here is a narrow strip of InAs two-dimensional electron gas with a strong Rashba spin-orbit coupling. Six quantum point contacts (QPCs) are attached to the strip as pinball pockets. The ZB appeared as a large reproducible conductance fluctuation versus in-plane magnetic fields in the transport between two QPCs. Numerical simulations successfully reproduced our experimental observations, certifying that ZB causes a new type of conductance fluctuation.