A quantum algorithm that solves the time-dependent Dirac equation on a digital quantum computer is developed and analyzed. The time evolution is performed by an operator splitting decomposition technique that allows for a mapping of the Dirac operator to a quantum walk supplemented by unitary rotation steps in spinor space. Every step of the splitting method is decomposed into sets of quantum gates. It is demonstrated that the algorithm has an exponential speedup over the implementation of the same numerical scheme on a classical computer, as long as certain conditions are satisfied. Finally, an explicit decomposition of this algorithm into elementary gates from a universal set is carried out to determine the resource requirements. It is shown that a proof-of-principle calculation may be possible with actual quantum technologies.