A Physical Unclonable Function with Redox-based Nanoionic Resistive Memory


الملخص بالإنكليزية

A unique set of characteristics are packed in emerging nonvolatile reduction-oxidation (redox)-based resistive switching memories (ReRAMs) such as their underlying stochastic switching processes alongside their intrinsic highly nonlinear current-voltage characteristic, which in addition to known nano-fabrication process variation make them a promising candidate for the next generation of low-cost, low-power, tiny and secure Physically Unclonable Functions (PUFs). This paper takes advantage of this otherwise disadvantageous ReRAM feature using a combination of novel architectural and peripheral circuitry. We present a physical one-way function, nonlinear resistive Physical Unclonable Function (nrPUF), potentially applicable in variety of cyber-physical security applications given its performance characteristics. We experimentally verified performance of Valency Change Mechanism (VCM)-based ReRAM in nano-fabricated crossbar arrays across multiple dies and runs. In addition to a massive pool of Challenge-Response Pairs (CRPs), using a combination of experimental and simulation, our proposed PUF shows a reliability of 98.67%, a uniqueness of 49.85%, a diffuseness of 49.86%, a uniformity of 47.28%, and a bit-aliasing of 47.48%.

تحميل البحث