Temperature-dependent magnetic experiments like pump-probe measurements generated by a pulsed laser have become a crucial technique for switching the magnetization in the picosecond time scale. Apart from having practical implications on the magnetic storage technology, the research field of ultrafast magnetization poses also fundamental physical questions. To correctly describe the time evolution of the atomic magnetic moments under the influence of a temperature-dependent laser pulse, it remains crucial to know if the magnetic material under investigation has magnetic excitation spectrum that is more or less dependent on the magnetic configuration, e.g. as reflected by the temperature dependence of the exchange interactions. In this article, we demonstrate from first-principles theory that the magnetic excitation spectra in Co with fcc, bcc and hcp structures are nearly identical in a wide range of non-collinear magnetic configurations. This is a curious result of a balance between the size of the magnetic moments and the strength of the Heisenberg exchange interactions, that in themselves vary with configuration, but put together in an effective spin Hamiltonian results in a configuration independent effective model. We have used such a Hamiltonian, together with ab-initio calculated damping parameters, to investigate the magnon dispersion relationship as well as the ultrafast magnetisation dynamics of Co and Co-rich CoMn alloys.