Spin-wave propagation in ultra-thin YIG based waveguides


الملخص بالإنكليزية

Spin-wave propagation in an assembly of microfabricated 20 nm thick, 2.5 {mu}m wide Yttrium Iron Garnet (YIG) waveguides is studied using propagating spin-wave spectroscopy (PSWS) and phase resolved micro-focused Brillouin Light Scattering ({mu}-BLS) spectroscopy. We show that spin-wave propagation in 50 parallel waveguides is robust against microfabrication induced imperfections. Spin-wave propagation parameters are studied in a wide range of excitation frequencies for the Damon-Eshbach (DE) configuration. As expected from its low damping, YIG allows the propagation of spin waves over long distances (the attenuation lengths is 25 {mu}m at mu$_{0}$H = 45 mT). Direct mapping of spin waves by {mu}-BLS allows us to reconstruct the spin-wave dispersion relation and to confirm the multi-mode propagation in the waveguides, glimpsed by propagating spin-wave spectroscopy.

تحميل البحث