Let E/Q be an elliptic curve and p a rational prime of good ordinary reduction. For every imaginary quadratic field K/Q satisfying the Heegner hypothesis for E we have a corresponding line in E(K)otimes Q_p, known as a shadow line. When E/Q has analytic rank 2 and E/K has analytic rank 3, shadow lines are expected to lie in E(Q)otimes Q_p. If, in addition, p splits in K/Q, then shadow lines can be determined using the anticyclotomic p-adic height pairing. We develop an algorithm to compute anticyclotomic p-adic heights which we then use to provide an algorithm to compute shadow lines. We conclude by illustrating these algorithms in a collection of examples.