Exotic Looped Trajectories of Photons in Three-Slit Interference


الملخص بالإنكليزية

The validity of the superposition principle and of Borns rule are well-accepted tenants of quantum mechanics. Surprisingly, it has recently been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the predictions of the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small and thus rendering them extremely difficult to measure. In this work, we confirm the validity of Borns rule and present the first experimental observation of these exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process effectively increases the probability of occurrence of these exotic trajectories, demonstrating that they are related to the near-field component of the photons wavefunction.

تحميل البحث