In this paper, we revisit the problem of finding the longest systematic-length $k$ for a linear minimum storage regenerating (MSR) code with optimal repair of only systematic part, for a given per-node storage capacity $l$ and an arbitrary number of parity nodes $r$. We study the problem by following a geometric analysis of linear subspaces and operators. First, a simple quadratic bound is given, which implies that $k=r+2$ is the largest number of systematic nodes in the emph{scalar} scenario. Second, an $r$-based-log bound is derived, which is superior to the upper bound on log-base $2$ in the prior work. Finally, an explicit upper bound depending on the value of $frac{r^2}{l}$ is introduced, which further extends the corresponding result in the literature.